HARPIA | TA Ultrafast Transient Absorption Spectrometer

FEATURES

- Market-leading sensitivity
- 330 nm 24 μm spectral range
- Probe delay ranges from 2 ns to 8 ns
- Pump pulse energies down to nJ
- Cryostat and peristaltic pump support

The HARPIA-TA ultrafast transient absorption spectrometer provides pump-probe measurement functionality in a HARPIA system. Several probe light configurations and detection options are available: from a photodiode for single-wavelength detection to white-light supercontinuum probing combined with spectrally-resolved broadband detection. HARPIA-TA features extensive automation options providing pump and probe beam position tracking and alignment, pump polarization control, supercontinuum generator switching, sample positioning, as well as switching between transient absorption and transient reflection measurements.

Broadband probe options cover a 330 – 1600 nm range, while a monochromatic probe can be used up to 24 μ m. The probe delay stage is configurable from 2 ns to 8 ns.

HARPIA-TA features market-leading sensitivity of 0.05 mOD $(10^{-4} \Delta T/T)$ and can be operated at high repetition rates of up to 1 MHz when used with a PHAROS or CARBIDE laser and an ORPHEUS series OPA, which allows the study of transient absorption dynamics with excitation pulse energies down to several nanojoules.

HARPIA-TA is compatible with cryostats and peristaltic pumps, and the capabilities of the spectrometer are extendable using expansion modules.

HARPIA-TA optical layout for pump-probe experiments

SPECIFICATIONS

Model	HARPIA-TA

PUMP-PROBE SPECIFICATIONS

	UV / VIS / NIR / SWIR				
1030 nm	515 nm	800 nm	n/a 1)		
460 – 1600 nm	350 – 750 nm	330 – 1400 nm	190 nm – 16000 nm ²⁾		
200 - 1100	200 – 1100 nm, 900 – 1700 nm, or 900 – 2600 nm				
	2 ns, 4 ns, or 8 ns				
	2.1 fs, 4.2 fs, or 8.3 fs				
1–1000 kHz					
< 1.4× pump or probe pulse duration, whichever is longer					
	4000 spectra/s				
	250:1		_		
	1030 nm 460 - 1600 nm 200 - 1100	UV / VIS / NIR / SWIR 1030 nm 515 nm 460 - 1600 nm 350 - 750 nm 200 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, or 90 201 - 1100 nm, 900 - 1700 nm, 90 201 - 1100 nm, 900 nm, 900 nm, 900 nm, 900 201 - 1100 nm, 900	UV / VIS / NIR / SWIR 1030 nm 515 nm 800 nm 460 - 1600 nm 350 - 750 nm 330 - 1400 nm 200 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 - 1100 nm, or $900 - 2600$ nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 nm 201 - 1100 nm, 900 - 1700 nm, or $900 - 2600$ nm 200 nm 201 - 1100 nm 200 nm 200		

OPTIONAL FLASH PHOTOLYSIS EXTENSION

Delay resolution	100 ps
Temporal resolution	2 ns
SNR ⁵⁾	40:1

DIMENSIONS

Physical dimensions (L × W × H) 6730 × 420 × 160 mm			
Sample chamber area (L × W)	205 × 216 mm		
 A wavelength-tunable source is used instead of a laser-excited white-light continuum. An extended tuning range of ORPHEUS-HP; see specification for more details. Also 	 ⁴⁾ Estimated as the standard deviation of a set of 2500 spectra measured in SCHOTT OG530 glass with 54 nJ, 370 nm pump and > 4.5 mOD at a maximum of the spectrum. Not applicable to all samples and configurations. ⁵⁾ Estimated as the standard deviation of a set of 2000 spectra measured in 	DAN LASE OR S CL/	

SCHOTT OG530 glass with 515 nm pump and > 10 mOD at a maximum of the spectrum. Not applicable to all samples and configurations.

⁶⁾ Without external spectrograph.

applicable to UV/VIS/NIR/SWIR configuration. ³⁾ Up to 24 µm available upon request; contact sales@lighton.com for more details.

CRYOSTAT MOUNTING OPTION

HARPIA-TA supports cryostats that can be mounted externally or internally. For more details contact sales@lightcon.com.

DRAWINGS

55