公司新闻 | 行业新闻



    拉曼光谱是一种先进的光谱技术,它本身并没有那么复杂,令人棘手的是测试样品的拉曼峰与其他拉曼峰以及噪音混合在一起。例如,在传统的光谱测量中,你可以分析一个透射吸光度图(比如比色皿中的染料)或一个材料反射率图,并很容易地挑选出宽阔的背景光谱峰和明显的吸收或者反射峰并解释它们。但在拉曼光谱中,你所关心的待测物拉曼峰可能混杂在众多拉曼峰与噪音之中。那么如何处理这么多错综复杂的拉曼数据呢?如何有效优化拉曼数据呢?

    基线校正
    基线校正即是从整体数据中统一扣除一个背景噪声,这意味着某些波数强度将降为零从而将整个数据拉回基线附近。这将纠正由焦点、功率等问题引起的垂直偏移,但不会影响拉曼峰之间的相对关系。

    在光谱测量过程中,做峰值分析之前执行基线校正是非常重要的。因为峰值或一般的任何值,都可能受到某些环境影响而发生强度的偏移,但这种偏移可以通过已知的独立于变化参数区域以外的数据进行校正-基线校正。拉曼光谱也可以做同样的事情,如果想要量化数据,基线校正是至关重要的。

    标准正态变量
    SNV是一种常用的拉曼预处理技术,需要在拉曼范围内选择一些窗口来进行处理。通常,在拉曼应用中使用350-3000cm-1这个范围,但这个范围会根据图谱的表现方式而变化。事实上,基于系统反应、分析物活动等因素,这个范围是相当主观的。

    所以,SNV代表着全谱的平均值减去范围平均值,然后除以范围-标准差。通过这个预处理过程之后,可以将多次测量的数据放在同一范围内进行比对。


    在处理拉曼数据时,多数情况都会尝试SNV、基线校准等多种数据处理方式之后,选取处理结果更优的方式。所以拉曼数据处理有一大部分时间是在尝试不同的数据处理方法和模式。

    对于已知条件下采集的较大数据集,拉曼光谱数据可以作为训练数据做PCA相关性分析或者更复杂的统计分析。分析较大数据集的另一种选择是使用机器学习,但这通常也需要对数据进行一些预处理,以使输入与输出的数据有意义。




海洋光学拉曼系统